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This paper aims to investigate 3D static thermoelectroelastic problem of a uniform heat
flow in a bi-material periodically layered space disturbed by a thermally and electrically-
insulated rigid sheet-like inclusion (so-called anticrack) situated at one of the interfaces.
An approximate analysis of the considered laminated composite is given in the framework
of the homogenized model with microlocal parameters. Accurate results are obtained
by constructing suitable potential solutions and reducing to the corresponding homo-
geneous thermoelectromechanical (or thermomechanical) anticrack problems. The gov-
erning boundary integral equation for a planar interface anticrack of arbitrary shape is
derived in terms of a normal stress discontinuity. As an illustration, a complete solution
for a rigid circular inclusion is obtained in terms of elementary functions and interpreted
from the failure perspective. Unlike existing solutions for defects at the interface of
materials, the solution obtained displays no oscillatory behavior.

Keywords: periodic two-layered composite, homogenized model, interface anticrack,
thermo-electroelasticity, heat flow, thermal stress singularity.

1. Introduction

Due to the inherent coupling between mechanical and electrical properties, multi-
layered piezoelectric electronic structures (e.g., filters, radiators and converters) are
in the focus of special attention in the manufacture of composite materials (Rao
and Sunar [1]). In many cases, various defects such as cracks and inclusions may
appear at the interface between the layers. These defects cause high thermal, stress
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and electric field concentrations, which may lead to failure, fracture and dielectric
breakdown. Some industrial applications involve temperature changes producing
the pyroelectric effect. In this context, there is tremendous interest in studying the
failure behaviors of interface defects in thermopiezoelectric materials under thermal
loadings.

A comprehensive overview in the field of interface cracks in piezoelectric mate-
rials was presented by Govorukha et al. [2]. In addition to cracks, rigid lamellate
inclusions (also called anticracks, for brevity) are objects around which stress con-
centrations occur and further affect the behavior of material. In comparison with
thermoelastic problems of cracks in homogeneous materials or bi-materials, the
study of rigid inclusion problems are rather limited. Most investigations was con-
ducted on two-dimensional problems. Due to mathematical complexity, the more
practical and realistic three-dimensional problems involving anticracks subjected to
thermal actions seem to remain inadequately treated. Certain progress in homoge-
neous media has been achieved lately by Kaczyński [3]; see also extensive references
therein.

The present contribution is a sequel to some earlier investigations (Kaczyński
and Matysiak [4-5], Kaczyński and Monastyrskyy [6]) dealing with interface crack
or rigid inclusion problems in a bimaterial periodically layered space subjected to
thermal loading. It is devoted to examine the piezoelectric effect in analyzing the
obstruction of a uniform steady heat flow in a two-layer periodic stratified medium
by an interface rigid sheet-like inclusion (anticrack) that is isothermal and electri-
cally impermeable.

The paper is organized as follows. In Section 2, the description of the problem
under study and the use of the homogenized model of the considered composite are
demonstrated. Section 3 presents the resulting boundary-value problem and and
its solution method within the framework of this homogenized model that is almost
identical to that for the corresponding homogeneous thermoelectromechanical (or
thermomechanical) anticrack problem considered by Kaczyński and Kaczyński [7].
As an application of the theory, a closed form solution in terms of elementary func-
tions is given and discussed from the point of view of material failure for a circular
rigid disc-inclusion in Section 4. Finally, some conclusions are made in Section 5.

2. Problem description and governing equations of the homogenized
model

The composite being considered is a periodic stratified space consisting of a re-
peated thin fundamental layer of thickness δ which is composed of two homoge-
neous bonded sublayers with different mechanical and thermopiezoelectric proper-
ties, denoted by 1 and 2, with thicknesses δ1 and δ2 (so δ = δ1 + δ2) as shown in
Fig. 1. In the following, all quantities (material constants, stresses, etc.) perti-
nent to these sublayers will be denoted with the superscript (r) taking the values
1 and 2, respectively. Assume that the piezoelectric materials filling sublayers are
chosen with 6 mm hexagonal symmetry (Nye [8]), characterized by the following

system of constants: c
(r)
11 , c

(r)
12 , c

(r)
13 , c

(r)
33 , c

(r)
44 – elastic stiffnesses, e

(r)
31 , e

(r)
33 , e

(r)
15 –

piezoelectric constants, ε
(r)
11 , ε

(r)
33 – dielectric permittivities, k

(r)
1 , k

(r)
3 – thermal con-

ductivity coefficients, α
(r)
1 , α

(r)
3 – thermal coefficients of linear expansion. Besides,
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β
(r)
1 =

(
c
(r)
11 + c

(r)
12

)
α
(r)
1 + c

(r)
13 α

(r)
3 , β

(r)
3 = 2 c

(r)
13 α

(r)
1 + c

(r)
33 α

(r)
3 are the thermome-

chanical moduli and p
(r)
3 = 2 e

(r)
31 α

(r)
1 + e

(r)
33 α

(r)
3 are the pyroelectric constants.

Figure 1 A bi-material periodically layered space with an interface anticrack

Referring to the Cartesian coordinate systemOx1, x2, x3 with the x3-axis normal to
the layering and being the axis of symmetry and polarization, denote at the typical
point x = (x1, x2, x3) the temperature (strictly, a deviation of the temperature
from the reference state) by θ, the electric potential by Φ and the components of
the displacement vector, stress tensor and electric induction vector by ui, σi j , Di

(i, j ∈ {1, 2, 3}), respectively.
Suppose that a rigid sheet-like inclusion (anticrack) serving as a mechanical

defect in this periodically layered composite occupies a domain S with smooth
boundary at the interface x 3 = 0, and there is a constant heat flow q (∞) =
[0, 0,− q0] , q0 > 0 in the direction of the negativex3-axis (Fig. 1). The anti-
crack S is assumed to be thermally insulated and electrically impermeable. The
perfect mechanical, thermal and electrical contacts between the layers (excluding
the inclusion region S ) are required. Moreover, the stress and electric displacement
field should decay to zero at infinity.

To analyze the thermal stress and electric displacement field disturbed by this
defect, a direct analytical approach becomes intricate because of the complicated
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geometry and complex boundary conditions. Therefore, a specific homogenization
procedure called microlocal modelling (Woźniak [9]) will be employed in order to
seek an approximate solution within certain homogenized model of the considered
composite. We utilize this approach for periodically layered piezoelectric composites
presented in Evtushenko et al. [10] and attempt to derive the governing equations
of this model by using the homogenized process based on the uncoupled thermo-
electroelasticity. However, we omit the presentation of mathematical assumptions
and detailed calculations; see the papers cited above for details.

In the subsequent considerations the following notation will be used: Latin
subscripts always assume values 1, 2, 3 and the Greek ones 1,2. The Einstein
summation convention holds and a comma followed by an index denotes the partial
differentiation with respect to the corresponding coordinate variable.

The following representations and microlocal approximations for the tempera-

ture θ(r), fluxes q
(r)
i , the electric potential Φ(r), displacements u

(r)
i , stresses σ

(r)
i j and

electric displacementsD
(r)
i are postulated within the stationary thermo-electroelasticity

with microlocal parameters (see Evtushenko et al. [10], Kaczyński [11], Chen [12]):

θ(r) = ϑ+ hΓ ∼= ϑ, θ(r), α
∼= ϑ, α, θ

(r)
, 3

∼= ϑ, 3 + h′Γ (1)

q(r)α
∼= − kr ϑ, α, q

(r)
3

∼= − kr (ϑ, 3 + h′Γ, 3) (2)

Φ(r) = φ+ hH ∼= φ, Φ(r)
, α

∼= φ, α, Φ
(r)
, 3

∼= φ, 3 + h′H (3)

u
(r)
i = wi + h di ∼= wi, u

(r)
i, α

∼= wi, α, u
(r)
i, 3

∼= wi, 3 + h′d3 (4)

σ
(r)
3α

∼= c
(r)
44 (wα , 3 + w3 , α + h′d3) + e

(r)
15 φ, α (5)

σ
(r)
33

∼= c
(r)
13 wγ , γ + c

(r)
33 (w3 , 3 + h′d3) + e

(r)
33 (φ, 3 + h′H)− βr ϑ (6)

σ
(r)
12

∼= 0, 5
(
c
(r)
11 − c

(r)
12

)
(w1 , 2 + w2 , 1) (7)

σ
(r)
11

∼= c
(r)
1γ wγ, γ + c

(r)
13 (w3 , 3 + h′d3) + e

(r)
31 (φ, 3 + h′H)− βr ϑ (8)

σ
(r)
22

∼= c
(r)
1 3−γ wγ, γ + c

(r)
13 (w3 , 3 + h′d3) + e

(r)
31 (φ, 3 + h′H)− βr ϑ (9)

D(r)
α = e

(r)
15 (wα , 3 + w3 , α + h′d3)− ε

(r)
11 φ, α (10)

D
(r)
3 = e

(r)
31 wγ , γ + e

(r)
33 (w3 , 3 + h′d3)− ε

(r)
33 (φ, 3 + h′H) + p3 ϑ (11)

In the above, ϑ, φ, wi and Γ , H, di are unknown functions interpreted as the
macro-temperature, the macro-electric potential, macro-displacements and the mi-
crolocal thermal, electric and kinematic parameters, respectively. Moreover, the
postulated a priori function h, called the shape function, characterizes the special
approximate model of the layered composite. As for the treated stratified body, this
function (being sectional linear, δ- periodic) with its derivative is chosen as follows:

h (x3) =

{
x3 − 0, 5 δ1, x3 ∈ ⟨0, δ1⟩
(δ1 − η x3) / (1− η)− 0, 5 δ1, x3 ∈ ⟨δ1, δ⟩

η = δ1/δ (12)
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h′ =

{
1 for r = 1
−η/ (1− η) for r = 2

(13)

According to the results of Evtushenko et al. [10], the asymptotic approach
to the macro-modelling of the considered layered composite leads to the governing
relations of certain macro-homogeneous medium (the homogenized model), given in
terms of the macroscopic temperature ϑ, the macroscopic electric potential φ and
macroscopic displacements wi (after eliminating all microlocal parameters Γ , H, di
and in the absence of heat sources, body forces and electric charges) as follows:

• The governing equation of heat conduction for the macro-temperature ϑ:

ϑ, 1 1 + ϑ, 22 +K−2
0 ϑ, 33 = 0 ⇔ ∆ϑ+ K−2

0 ϑ, 3 3 = 0 (14)

• The governing equations for macro-displacements wi and the macro-electric
potential φ:

C1 j wj, 1j+C66 (w1, 22 + w2, 12)+C44 (w1, 33 + w3, 13)+E φ, 31 = K1 ϑ, 1 (15)

C2 j wj, 2j+C66 (w1, 12 + w2, 11)+C44 (w2, 33 + w3, 23)+E φ, 32 = K1 ϑ, 2 (16)

C3 j wj, 3j+C44 (w1, 13 + w2, 23 + w3, γ γ)+E15 φ, γ γ+E33 φ, 33 = K3 ϑ, 3 (17)

E (w1,13 + w2,23)+E15w3,γγ +E33w3,33 − Ĕ11φ,γγ − Ĕ33φ,33 = −P3ϑ,3 (18)

• The constitutive relations for fluxes q
(r)
i , stresses σ

(r)
i j and electric displace-

ments D
(r)
i :

q(r)α = − kr ϑ, α, q3 = − K ϑ, 3 (19)

σα3 = C44 (wα, 3 + w3, α) + E15 φ, α (20)

σ33 = C13 (w1, 1 + w2, 2) + C33 w3, 3 + E33 φ, 3 − K3 ϑ (21)

σ
(r)
12 = c

(r)
66 (w1, 2 + w2, 1) (22)

σ
(r)
11 = d

(r)
11 w1, 1 + d

(r)
12 w2, 2 + d

(r)
13 w3, 3 + E

(r)
31 φ, 3 − K

(r)
1 ϑ (23)

σ
(r)
22 = d

(r)
12 w1, 1 + d

(r)
11 w2, 2 + d

(r)
13 w3, 3 + E

(r)
31 φ, 3 − K

(r)
1 ϑ (24)

Dα = E15 (wα, 3 + w3, α)− Ĕ15 φ, α (25)

D3 = E31 (w1, 1 + w2, 2) + E33 w3, 3 − Ĕ33 φ, 3 + P3 ϑ (26)

The coefficients appearing in Eqs. (14)–(26) are given in Appendix A. They de-
pend in a complicated way on material and geometrical properties of the composite
constituents.

It is noteworthy to point out the close relation of these equations to fundamental
equations of piezothermoelasticity in stationary case for an elastic homogeneous
body with transverse isotropy specified by five elastic stiffnesses C11, C12, C13, C33,
C44, three piezoelectric constants E31, E33, E15, two dielectric permittivities Ĕ11,
Ĕ33, one pyroelectric constant P3 and two thermal conductivity coefficients k̃1, K.

The difference manifests itself in the fact that fluxes q
(r)
α and stresses σ

(r)
αβ suffer
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a discontinuity on the interfaces. Notice that the condition of ideal thermal and
electromechanical contact between the layers is satisfied. Finally, assuming that the
two sublayers have the same thermo-electromechanical properties, we pass directly
to the well-known equations of classical theory of uncoupled stationary thermo-
electroelasticity for a homogeneous transversely isotropic solid (Chen [12]).

3. Formulation of the anticrack problem and its potential solution

Within the scope of the presented homogenized model we are concerned with the
following boundary-value problem: find fields ϑ and φ, wi, σi j , Di suitable smooth
on R3\S such that Eqs. (14)–(26) hold subject to:

• Thermal conditions:

q3 = −K ϑ,3 = 0 ∀
(
x1, x2, x3 = 0±

)
∈ S (27)

(heat-insulated anticrack)

q3 = −K ϑ, 3 → −q0 as
√
x2
1 + x2

2 + x2
3 → ∞ (28)

(vertical flow of uniform heat)

• Mechanical conditions on S:

w1 = w2 = 0, w3 = ε, ∀
(
x1, x2, x3 = 0±

)
∈ S (29)

(rigid inclusion with a vertical unknown small translation ε)

• The condition of electrically-insulated (impermeable) rigid inclusion S :

D3 = 0 , ∀
(
x1, x2, x3 = 0±

)
∈ S (30)

• Mechanical and electrical conditions at infinity (stress and electric-free state):

σi j = 0, Di = 0 (31)

It is noteworthy here that a similar boundary-value problem is formulated and
solved in Kaczyński and Kaczyński [7]. In what follows, proceeding as in this paper,
only main results will be presented in order to solve the above anticrack problem
within the homogenized model.

To satisfy the global boundary conditions (28)–(31), superposition is applied
to separate the problem into two parts: the first one (attached by 0) relating to
a basic state of the homogenized space with no inclusion and the second, corrective
part (with tilde) describing the perturbations caused by the existence of the rigid
inclusion. Thus, the solution is written as:

ϑ =
0

ϑ+ϑ̃, wi =
0
wi +w̃i , Φ =

0

Φ+Φ̃, σi j =
0

σi j +σ̃i j , Di =
0

Di +D̃i (32)
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The results for the first 0-problem involving the solution to the basic equations
(14)–(18) with conditions (28) and (31) are computed as:

0

ϑ (x1, x2, x3) = q0
K x3,

0
wα = q0

k3
nγ xγδαγ x3 ,

0
w3 = q0

2K

[
n2x

2
3 − n1

(
x2
1 + x2

2

)]
0

Φ = − q0
2Kn3x

2
3 ,

0
σi j = 0 ,

0

Di = 0
(33)

where the constants ni are found from the linear system of equations C11 + C12 C13 −E31

2C13 C33 −E33

2E31 E33 Ĕ33

  n1

n2

n3

 =

 K1

K3

−P3

 (34)

Attention will be concentrated next on the non-trivial solution of the perturbed
problem.

The disturbing thermal field ϑ̃, which is odd in x3 and vanishes at infinity, is
determined by solving Eq. (14) in the half-space x3 ≥ 0 with the following boundary
conditions:

∆ϑ̃+K−2
0 ϑ̃, 33 = 0 , ∀ (x1, x2, x3) , x3 ≥ 0

ϑ̃, 3 |S+ = − q0
K , ϑ̃ |R2−S+ = 0 , ϑ̃ → 0 as

√
x2
1 + x2

2 + x2
3 → ∞

(35)

Making use of the potential theory (Kellogg [13]), a solution is written via the
thermal potential ω̃ (x1, x2, z0) such that

ϑ̃ (x1, x2, x3) = −∂2 ω̃ (x1, x2, z0)

∂z20
, z0 = K0x3 ≥ 0,

(
∆ +

∂2

∂ z20

)
ω̃ = 0 (36)

Assuming that

ω̃ (x1, x2, z0) =

∫∫
S

ln

(√
(x1 − ξ1)

2
+ (x2 − ξ2)

2
+ z20 + z0

)
γ (ξ1, ξ2) dξ1dξ2 (37)

we obtain from (35) the following integro-differential equation of Newton’s potential
type for the unknown density γ (x1, x2):

∆

∫∫
S

γ (ξ1, ξ2) dξ1 d ξ2√
(x1 − ξ1)

2
+ (x2 − ξ2)

2
= − q0

KK0
(38)

Note that this equation is similar to that which arises in mode I crack prob-
lem for the case of constant loads (Fabrikant [14]). Moreover, the desired macro-
temperature has a jump on the surface S :

ϑ̃
(
x1, x2, x3 = 0+

)
− ϑ̃

(
x1, x2, x3 = 0−

)
= 4πγ (x1, x2) , ∀ (x1, x2) ∈ S (39)

We proceed now to the associated problem of electroelasticity that is governed
by Eqs. (15)–(18) and (20)–(26) with the unknowns marked by the tilde. Be-
cause of the anti-symmetry of the temperature and stress system, and bearing in
mind Eqs. (32), (33), (29), (30) and the resulting conditions for the displacements
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(i.e., (w̃1, w̃2 , D̃3 are odd in x3,w̃3 is even in x3), the anticrack perturbed problem
may be formulated as a mixed problem over a half-space x3 ≥ 0 with the following
boundary conditions:

w̃α

(
x1, x2, x3 = 0+

)
= 0 , ∀ (x1, x2) ∈ R2 (α = 1, 2) (40)

w̃3

(
x1, x2, x3 = 0+

)
=

q0 n1

2K

(
x2
1 + x2

2

)
+ ε , ∀ (x1, x2) ∈ S (41)

σ̃3 3

(
x1, x2, x3 = 0+

)
= 0 , ∀ (x1, x2) ∈ R2 − S, ∀ (x1, x2) ∈ R2 (42)

D̃3

(
x1, x2, x3 = 0+

)
= 0 , ∀ (x1, x2) ∈ R2 (43)

w̃i = O

(
1

|x|

)
as |x| =

√
x2
1 + x2

2 + x2
3 → ∞ (44)

For solving this boundary-value problem we use the potential function approach
with some modifications well suited to the above boundary conditions, derived in
Kaczyński and Kaczyński [7]. It is based on constructing a special representation of
governing equations (15)–(18) expressed by a single harmonic function f̃ (x1, x2, x3)
as follows:

w̃α = bi

[
f̃ (x1, x2, zi)

]
,α

+Ai [ω̃ (x1, x2, zi)], α

+c1 [ω̃ (x1, x2, z0)],α (45)

w̃3 = misibi

[
f̃ (x1, x2, zi)

]
,zi

+misiAi [ω̃ (x1, x2, zi)],zi

−c2K0 [ω̃ (x1, x2, z0)],z0 (46)

Φ̃ = lisibi

[
f̃ (x1, x2, zi)

]
, zi

+ lisiAi [ω̃ (x1, x2, zi)], zi

−c3K0 [ω̃ (x1, x2, z0)],z0 (47)

σ̃3α = aisibi

[
f̃ (x1, x2, zi)

]
, zi α

+ aisiAi [ω̃ (x1, x2, zi)], zi α

+δ1 [ω̃ (x1, x2, z0)],z0 α (48)

σ̃3 3 = aibi

[
f̃ (x1, x2, zi)

]
, zi zi

+ aiAi [ω̃ (x1, x2, zi)], zi zi

−δ3 [ω̃ (x1, x2, z0)], z0 z0
(49)

D̃α = disibi

[
f̃ (x1, x2, zi)

]
, zi α

+ disiAi [ω̃ (x1, x2, zi)], zi α

+τ1 [ω̃ (x1, x2, z0)],z0 α (50)

D̃3 = dibi

[
f̃ (x1, x2, zi)

]
, zi zi

+ diAi [ω̃ (x1, x2, zi)], zi zi

−τ3 [ω̃ (x1, x2, z0)], z0 z0
(51)

here, z0 = K0 x3 , zi = si x3 and the material constants si, mi, li, ci, ai, bi, di, δ1,
δ3, τ1, τ3, Ai are defined in Appendix B.

It is then shown that the anticrack perturbed problem described by Eqs. (40)–
(44) is reduced to the classical mixed potential problem (cf. Sneddon [15]) of finding
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the harmonic function f̃ in the half-space x3 ≥ 0 with the boundary conditions:

misibi

[
∂f̃ (x1, x2, x3)

∂x3

]
x3=0+

= r̃3 (x1, x2) , ∀ (x1, x2) ∈ S (52)

[
∂2f̃ (x1, x2, x3)

∂ x2
3

]
x3=0+

= 0 , ∀ (x1, x2) ∈ R2 − S (53)

with:

r̃3 (x1, x2) = β̃

[
∂ω̃ (x1, x2, z0)

∂z0

]
z0=0

+
q0n1

2K

(
x2
1 + x2

2

)
+ ε

(54)

β̃ = c2K0 −misiAi

A well-known solution to this classical boundary problem in potential theory
(Kellogg [13]) may be written in the following form:

f̃ (x1, x2, x3)

(55)

=
−1

2π aibi

∫∫
S

σ̃33

(
ξ1, ξ2, 0

+
)
ln

(√
(x1 − ξ1)

2
+ (x2 − ξ2)

2
+ x2

3 + x3

)
dξ1dξ2

Then, enforcing the displacement boundary condition (52), we arrive at the gov-
erning two-dimensional singular integral equation of Newtonian potential type to
determine the unknown normal stress σ̃+

33 (x1, x2) ≡ σ̃33 (x1, x2, 0
+) , (x1, x2) ∈ S

on the upper side of S:

mjsjbj
2π aibi

∫∫
S

σ̃+
33 (ξ1, ξ2) dξ1 dξ2√

(x1 − ξ1)
2
+ (x2 − ξ2)

2
= −r̃3 (x1, x2) , ∀ (x1, x2) ∈ S (56)

The above equation is analogous to the well-known governing equation of the
frictionless contact problem of an isotropic half-space under the action of a rigid
punch (see, for instance, Fabrikant [14]).

Having found the stress σ̃+
33 |S from the solution to this equation, the parameter

εwill be obtained from the equilibrium condition having a form:∫∫
S

σ̃+
33 (x1, x2) dx1 dx2 = 0 (57)

Moreover, the main potential f̃ is found from Eq. (55) and the whole perturbed
electroelastic fields can be obtained from relations (45)–(51).

It is worth mentioning that for a rigid inclusion with an arbitrary shapeS, the
governing equations (38) and (56) can be generally solved by numerical methods.
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4. Example: interface circular anticrack in a uniform heat flow

For illustration, making use of the results of Kaczyński and Kaczyński [7], a solution
expressed in elementary functions will be presented for a rigid circularly shaped
inclusion, i.e.:

S =
{
(x1 = r cos θ, x2 = r sin θ, x3 = 0) : 0 ≤ r =

√
x2
1 + x2

2 ≤ a ∧ 0 ≤ θ ≤ 2π
}

Accordingly, the axially-symmetric solution to the thermal perturbed problem
is given by:

γ (x1, x2) = γ̃ (r) =
q0

π2
√
k̃1K

√
a2 − r2 , 0 ≤ r ≤ a (58)

ω̃ (r, z0) =
q0

2π
√

k̃1 K

[
z0
(
2a2 + 2

3z
2
0 − r2

)
sin−1 a

l20
+

+1
3

√
a2 − l210

(
5r2 − 10

3 a2 − 2l220 − 11
3 l210

)
+ 4

3a
3 ln

[
l20 +

√
l220 − r2

]] (59)

ϑ̃ (r, z0) = −∂2ω̃

∂z20
= − 2 q0

π
√

k̃1 K

(
z0 sin

−1 a

l20
−
√
a2 − l210

)
(60)

where Fabrikant’s [14] notation has been used:

L1 ≡ L1 (a, r, x3) =
1

2

[√
(r + a)

2
+ x2

3 −
√
(r − a)

2
+ x2

3

]
, l10 = L1 (a, r, z0)

(61)

L2 ≡ L2 (a, r, x3) =
1

2

[√
(r + a)

2
+ x2

3 +

√
(r − a)

2
+ x2

3

]
, l20 = L2 (a, r, z0)

along with the following properties:

[L1]x3=0 = [l10]z0=0 = min (a, r) , [L2]x3=0 = [l20]z0=0 = max (a, r) (62)

In turn, an analytical solution to the governing equation (56) is:

σ̃+
33 (r) =

β̃
(e)
3 q0
π

2a2 − 3r2√
a2 − r2

, 0 ≤ r < a (63)

where:

β̃
(e)
3 =

2aibi
3mjsjbj

β0; β0 =
2n1

K
− β̃√

k̃1K
(64)

Moreover, the vertical rigid displacement is found from (57) as:

ε = −a2q0
3

(
β̃√
k̃1K

+
n1

K

)
(65)

The main harmonic potential for the electroelastic perturbed problem is ob-
tained by calculating integral (55) with the use of (63). As a result, we find that
for x3 ≥ 0:

f̃ (x1, x2, x3) = − β̃
(e)
3 q0

2π2aibi

[
x3 sin

−1 a
L2

(
a2 − 3

2r
2 + x2

3

)
+

+
√
a2 − L2

1

(
5r2 + 1

3a
2 − L2

2 − 11
6 L2

1

)] (66)
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The full-space piezothermoelastic field can be obtained from formulas (45)–(51).
The derivation is omitted here to save the space of the paper. To investigate the
singular behavior of the thermal-electric-stress field near the disc edge, however,
some relevant interfacial quantities in the plane of the anticrack are presented below:

ϑ
(
x1, x2, 0

±) = { ± 2 q0
πK K0

√
a2 − r2 , 0 ≤ r ≤ a

0 , r > a
(67)

q3
(
r, 0±

)
= −K ϑ,3

(
r, 0±

)
=

{
0 , 0 ≤ r < a
2 q0
π

(
sin−1 a

r − a√
r2−a2

)
− q0 , r > a

(68)

σ33

(
r, 0±

)
=

{
± β̃

(e)
3 q0
π

2a2−3r2√
a2−r2

, 0 ≤ r < a

0 , r > a
(69)

σ3 r (r, 0
±) = σ31 (r, 0

±) cos θ + σ32 (r, 0
±) sin θ =

=

{
β̃(e)q0 r , 0 ≤ r < a
2q0
π

(
β̃(e)r sin−1 a

r − β̃(e)
r a3

r
√
r2−a2

− β̃(e)a
√
r2−a2

r

)
, r > a

(70)

Dr (r, 0
±) = D1 (r, 0

±) cos θ +D2 (r, 0
±) sin θ =

=

{
β̃(ed)q0 r , 0 ≤ r < a
2q0
π

(
β̃(ed)r sin−1 a

r − β̃(ed)
r a3

r
√
r2−a2

− β̃(ed)a
√
r2−a2

r

)
, r > a

(71)

with the following constants:

β̃(e) =
3β̃

(e)
3 ajsjbj
4 aibi

− (akskAk+δ1)

2
√

k̃1K
, β̃

(e)
r = aisibi

3mjsjbj
β0

β̃(ed) =
3β̃

(e)
3 djsjbj
4 aibi

− (dkskAk+τ1)

2
√

k̃1K
, β̃

(ed)
r = disibi

3mjsjbj
β0

(72)

Now, it can be emphasized that the singularity of the thermal stresses and
electric displacements close to the edge of the anticrack has the order r−1/2, contrary
to the oscillatory type observed in the elastic fields relating to bimaterial interfaces
(Li and Fan [16]). Analyzing the above expressions, we reveal that:

• The anticrack S obstructs locally the heat flow, producing the jump of tem-
perature and the drastic change of its gradient on the surface near its front.

• The sign of normal stress σ33 |S changes at r =
√
2/3 a. Moreover, this stress

suffers the jump across S and exhibits the inverse square root singularity at
r = a−. One would expect a separation (detachment) of the surrounding
matrix material from the anticrack surface described by the stress singularity
coefficient:

S±
I = lim

r→ a−

√
2π (a− r)σ33

(
r, 0±

)
= ∓ β̃

(e)
3 q0 a

√
a√

π
(73)
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• Another mechanism controlling the material cracking around the anticrack
front is Mode II (edge-sliding) described by the thermal and electric stress
intensity factors:

K
(e)
II = lim

r→ a+

√
2π (r − a)σ3 r (r, 0) = − 2 β̃

(e)
r q0 a

√
a√

π
(74)

K
(ed)
II = lim

r→ a+

√
2π (r − a)Dr (r, 0) = − 2 β̃

(ed)
r q0 a

√
a√

π
(75)

The above-mentioned parameters may be used in the appropriate criterion for
initiating fractures at the edge of the inclusion.

Finally, the obtained solution for a stratified medium containing of a large num-
ber of alternating plane-parallel layers of two different piezoelectric materials can
be converted to that considered in Kaczyński and Kaczyński [7] for homogeneous
case.

5. Conclusions

The three-dimensional thermal stress problem for an interface insulated rigid inclu-
sion obstructing a uniform heat flux in a two-layer microperiodic piezoelectric space
has been investigated within the homogenized model with microlocal parameters.
Using the potential function method, the problem involving the inclusion of arbi-
trary shape has been reduced to classical boundary problems of potential theory.
Specifically, with the knowledge of the steady-state temperature distribution, the
governing equation similar in form to that reported in the literature on contact
problems in elasticity was derived. In particular, for a circularly-shaped inclusion
the complete solution was obtained in terms of elementary functions. Explicit ex-
pressions for the thermo-piezoelastic fields at the plane of inclusion surface were
given and interpreted from the point of view of linear fracture theory.
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Appendix A:
The effective constants in the governing equations (14)–(26) of the homogenized
model are derived by using the following averaging operators on the material func-
tion M taking constant values M (r) in the r -sublayer:

M = ηM (1) + (1− η)M (2), [M ] = η
(
M (1) −M (2)

)
(A.1)

M̂ = ηM (1) +
η2

1− η
M (2), η = δ1/δ

They are given as follows:

K0 =
(
k̃1/K

)1/2
k̃1 = η k

(1)
1 + (1− η) k

(2)
1

(A.2)

K = k̃3 −
[k3]

2

k̂3
=

k
(1)
3 k

(2)
3

(1− η) k
(1)
3 + η k

(2)
3

C11 = C22 = c̃11 −∆11, C12 = C21 = c̃12 −∆11,

C13 = C31 = C23 = C32 = c̃13 −∆11 (A.3)

∆11 =
[c1 3] (ε̂33 [c1 3] + ê31 [e31]) + [e31] (ê31 [c1 3]− ĉ33 [e31])

ĉ33ε̂33 + ê231
C33 = c̃33 −∆33

(A.4)

∆33 =
[c33] (ε̂33 [c3 3] + ê31 [e33]) + [e31] (ê31 [c3 3]− ĉ33 [e33])

ĉ33 ε̂33 + ê231
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C44 = c̃44 −
[c44]

2

ĉ44
=

c
(1)
44 c

(2)
44

(1− η) c
(1)
44 + η c

(2)
44

, C66 = (c̃11 − c̃12) /2 (A.5)

E = ẽ31 − δ31 + ẽ15 − δ15, E15 = ẽ15 − δ15, E33 = ẽ33 − δ33

δ31 =
[c1 3] (ε̂33 [e31] + ê31 [ε33]) + [e31] (ê31 [e31]− ĉ33 [ε33])

ĉ33ε̂33 + ê231
(A.6)

δ15 =
[c44] [e15]

ĉ44
, δ33 =

[c33] (ε̂33 [e31] + ê31 [ε33]) + [e33] (ê31 [e3 1]− ĉ33 [ε33])

ĉ33ε̂33 + ê231

Ĕ11 = ε̃11

(A.7)

Ĕ33 = ε̃33 −
[e33] (ε̂33 [e3 1] + ê31 [ε33]) + [ε33] (ê31 [e3 1]− ĉ33 [ε33])

ĉ33 ε̂33 + ê231

K1 = β̃1 −
[c1 3] (ε̂33 [β3]− ê31 [p3]) + [e31] (ê31 [β3]− ĉ33 [p3])

ĉ33 ε̂33 + ê231
(A.8)

K3 = β̃3 −
[c33] (ε̂33 [c3 3] + ê31 [e33]) + [e31] (ê31 [c3 3]− ĉ33 [e33])

ĉ33 ε̂33 + ê231

P3 = p̃3 −
[c33] (ε̂33 [β3]− ê31 [p3]) + [e31] (ê31 [β3] + ĉ33 [p3])

ĉ33 ε̂33 + ê231
(A.9)

d
(r)
11 = c

(r)
11 − c

(r)
13 h′ ε̂33 [c13] + ê31 [e13]

ĉ33ε̂33 + ê231
− e

(r)
31 h′ ê31 [c13]− ĉ33 [e13]

ĉ33ε̂33 + ê231
(A.10)

d
(r)
12 = c

(r)
12 − c

(r)
13 h′ ε̂33 [c13] + ê31 [e13]

ĉ33ε̂33 + ê231
− e

(r)
31 h′ ê31 [c13]− ĉ33 [e13]

ĉ33ε̂33 + ê231
(A.11)

d
(r)
13 = c

(r)
13 − c

(r)
13 h′ ε̂33 [c33] + ê31 [e33]

ĉ33ε̂33 + ê231
− e

(r)
31 h′ ê31 [c33]− ĉ33 [e33]

ĉ33ε̂33 + ê231
(A.12)

E
(r)
31 = e

(r)
31 − e

(r)
31 h′ ε̂33 [e31] + ê31 [ε33]

ĉ33ε̂33 + ê231
− e

(r)
31 h′ ê31 [c13]− ĉ33 [ε33]

ĉ33ε̂33 + ê231
(A.13)

K
(r)
1 = β

(r)
1 − c

(r)
13 h′ −ε̂33 [β3] + ê31 [p3]

ĉ33ε̂33 + ê231
− e

(r)
31 h′ −ê31 [β3]− ĉ33 [p3]

ĉ33ε̂33 + ê231
(A.14)

Appendix B:

Here, the constants involved in the solution of anticrack perturbed problem devel-
oped by Kaczyński and Kaczyński [7] are presented within the homogenized model.

The positive, real and distinct siare three roots of the material characteristic
equation

W (s) ≡ a0 s
6 − b0 s

4 + c0s
2 − d0 = 0 (B.1)

where the coefficients are:
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a0 = C44

(
C33 Ĕ33 + E2

33

)
b0 = C33

(
C44 Ĕ11 + E2

)
+ Ĕ33C

2 + E33 (2C44E15 + C11E33 − 2CE)

c0 = C44

(
C11 Ĕ33 + E2

)
+ Ĕ11C

2 + E15 (2C11E33 + C44E15 − 2CE)

d0 = C11

(
C44 Ĕ11 + E2

15

) (B.2)

provided:
C2 = C11C33−C13 (C13 + 2C44) , C = C13+C44, E = E15+E31 (B.3)

The corresponding constants mi and li are expressed as:

mi =
−C44 E33 s4i+(C11E33+C44E15−C E) s2i−C11 E15

s2i [(C E33−E C33)s2i−(C E15−E C44)]

li =
C44 C33 s4i−(C

2−2C2
44) s

2
i+C11C44

s2i [(CE33−EC33)s2i−(C E15−E C44)]

(B.4)

The constants c1, c2, c3 are the solution of the following linear system: C11 − C44K
2
0 C K2

0 EK2
0

C C33K
2
0 − C44 E33K

2
0 − E15

E E33k
2
0 − E15 Ĕ11 − Ĕ33K

2
0

  c1
c2
c3

 =

 K1

K3

−P3

 (B.5)

The remaining material coefficients occurring in the representation (45)–(51) are
as follows:
ai = C44 (1 +mi) + E15 li , di = E15 (1 +mi)− Ĕ11li
b1 = d3 − d2, b2 = d1 − d3, b3 = d2 − d1
δ1 = K0 [C44 (c1 − c2)− E15 c3] , δ3 = C13 c1 +K2

0 (C33c2 + E33c3)−K3

τ1 = K0

[
E15 (c1 − c2) + Ĕ11 c3

]
, τ3 = E31 c1 +K2

0

(
E33c2 − Ĕ33c3

)
+ P3

(B.6)

and the constants A1, A2, A3 are the solution of the following linear system: 1 1 1
d1 d2 d3
a1 a2 a3

  A1

A2

A3

 =

 − c1
τ3
δ3

 (B.7)




